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For the ratio dJmeas/Jmeas we insert the planimetering 
values. The characteristic temperature (O = 543 °K) of 
chromium at 310°K was obtained from the work of 
Wilson et al. (1966). 

The following results were obtained from the cal- 
culations: 

AO(sso) = 8-0 + 1.0 °K 

AO(712)A ----= 7.3 + 0.8 °K 

AO(712)B = 8.2 + 0.6 °K 

The statistical error quoted was determined from the 
variation of the experimental values of 

dJmeas 

Jmea$ 

These results are summarized as 

AO=7 .9±0 .8°K 

This result is about 2.8 times larger than the one cal- 
culated from the discontinuity of the elastic constants 
(Wilson et al., 1966). 

I should like to thank Professor K. D. Alexopoulos 
for his encouragement of this work and for his helpful 
advice. 
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Electron Population Analysis of Accurate Diffraction Data. I. Formalisms and Restrictions 
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A two-dimensional polynomial method is described which allows rapid evaluation of bond-scattering 
factors in a structure factor least-squares program. Correlation effects between electron population 
parameters are analyzed. It is concluded that simultaneous refinement of 2s2 and three 2p2 one-center 
populations is not possible. Similarly, for the y axis being along a bond AB, the distributions px(A)p~(B) 
and p~(A)px(B) are identical and only the sum of the corresponding population parameters can be re- 
fined. A variety of models is discussed, in which the number of parameters is reduced by selective 
elimination. In the two-center model all terms but those describing 'long' bonds are included. In the 
symmetry-restricted two-center model all bonds are required to have mm symmetry, while in the one- 
center model all two-center terms are neglected. Finally, a full table of symmetry restrictions on popula- 
tion parameters and a brief discussion of thermal motion treatment are given. 

Introduction 

With the improvement in experimental accuracy made 
possible by diffractometers the information contained 
in diffraction data has increased considerably. 

One of the potentially important extensions of X-ray 
crystallography is the study of electron distribution in 
crystals. For molecular crystals the interest is focused 
on the redistribution of the electron upon the formation 
of a molecule, or, in other words, upon the study of the 
covalent bond, In the last few years evidence has ac- 

cumulated which shows that X-ray diffraction data 
can be used for such a purpose. In particular, it has 
been realized that the amazing, and continuing, suc- 
cess of the spherical atom model is due to a refinement 
of electron density features through adjustment of 
anisotropic temperature parameters and atomic posi- 
tions. This can be illustrated through a combination 
of X-ray and neutron diffraction data (Coppens 1967; 
Coppens, Sabine, Delaplane & Ibers, 1969; Coppens & 
Vos, 1971) or by the use of high-order X-ray thermal 
parameters (Stewart & Jensen, 1969; Verschoor, 1967). 
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If the X-ray data contain such information on 
covalent bonding, the need arises for a quantitative 
description of the effects, suitable for comparison 
with the results of theoretical calculations. 

Expressions for the scattering by non-spherical 
atoms and density concentrated in a bond, were first 
derived in a series of articles by McWeeny (1953, 1954). 
At that time diffraction data were not yet sufficiently 
accurate for such a treatment, which explains the 
limited use that has been made of the formalisms. The 
expressions used in the present study were developed 
more recently by Stewart (1969) and are compatible 
with McWeeny's formulae. 

In both treatments, the evaluation of the X-ray scat- 
tering is facilitated considerably by expressing the 
atomic orbitals ~0 as expansions of p Gaussian terms 
of the form 

(ols.2s= Nls,2s E CpO~3£4 exp ( -%rZ) ;  
P 

~ozp=N2p ~%e~/4(r. fi) exp ( - % r  2) (1) 
P 

in which 5 is a unit vector along the p-orbital axis, r 
is a radial vector, and the coefficients N normalize the 
orbitals. While McWeeny included only three terms in 
the summation, Stewart derived coefficients and orbital 
exponents for larger expansions fitted to Hartree- 
Fock and Slater type orbitals. 

Stewart (1969) also proposed that the expression 
for the molecular X-ray scattering be generalized by 
the use of a molecular orbital formalism. If the mol- 
ecular orbitals ~,~ are written as linear combinations 
of atomic orbitals (LCAO) 

~i = ~ ciuq)u 
It 

the one-electron density function 0 is given by a sum 
over orbital products, each multiplied by a population 
parameter Pu~: 

As the X-ray scattering corresponding to the density 
distribution ~0,~0~ can be calculated, the parameters 
Puv can be adjusted in a least-squares refinement 
minimizing the discrepancies between the observations 
and the calculated values. The Puv's are not occupancy 
factors in the conventional sense, because the number 
of electrons associated with each Puv depends on the 
overlap integral S~: 

Number of electrons = I Puv~°u~°"d'c = Pu,,Su~, • (3) 

In this article further expressions are developed to 
make the application of (2) practical in structure 
analysis, and [imitations imposed by the nature of the 
experimental data and crystallographic and chemical 
symmetry are discussed. Application of the formalisms 
to the diffraction data on cyanuric acid and oxalic 
acid dihydrate will be described in following articles 
(Coppens, Pautler & Griffin, 1971; Coppens, Jones & 
Pautler, 1971).Some preliminary results have been re- 
ported (Coppens, Csonka & Willoughby, 1970). 

Evaluation of the scattering expressions 

The scattering of an orbital product ~0u~0v at rest is 
defined by its Fourier transform: 

< ~oulfl~0v> = I ~0u~0. exp {iS. r}dr (4) 

in which IS[ =4re sin 0/2. 
As an example we take the ~oz~Ozs orbital product. 

The expression for the X-ray scattering phased to the 
midpoint of the bond is: 

(2px(A) l f l2s (B) )=Sz  . R~,z+ifiz . SE3 (5) 

(Stewart, 1969), were R is the vector between nuclei A 
and B, fix is a unit vector along the x axis, and 
where 

s(A) pz(A) py(A) pz(A) s(B) px(B) py(B) pz(B) 

s(A) 

px(A) 

py(B) 

pz(B) 

s(B) 

p,dB) 

pu(B) 

pz(B) 

rbital 

roducts 

Bond A B 

16 orbital 
products 

Atom 
B 

10 orbital 

Fig. 1. The first order density matrix for a diatomi¢ molecule AB, 
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and 

0 = 2  ~ ~ ~ c,uc,,~ou~o~ = ~ ~ Pm, r, o uo~,. 
i / t  v /z v 

~,= ~,2Sl2Fp q(S,R) @n% 
2 p,q " O~p + ~q 

(2) Each of the coefficients A~ depends on the functions 
f a n d f '  and therefore on IS[ and IR[. It follows that 
for a bond of length R between orbitals defined by 

(6) sets of c~o, ~p and Cq, otq the A~. can be approximated by 
a polynomial in S or sin 0/2: 

~ =  ~23/2Fp ~(S,R) c~ 12 
• . ( 7 )  

3 p,q O~p--{- O~q 

Fp, q is defined by: 

F p , q -  ( ~ p _ [ _ ~ q ) 3 / 2  exp [-S2/4(0Cpq-~q)] 

O~pO~q 
x exp [ ] R21 xexp[- igpqS.R]  (8) (X p -at- -~ q 

in which gpq-- (o~,- O~q)/(c~ + ~q) and 0Cp,q and Cp,a 
are defined by (1). 

The description of the scattering of all possible prod- 
ucts of s and p orbitals requires ten summations ~ ,  
which all contain the terms F~,q, but differ in the ex- 
ponents of the factor 

n m (~pO~q 

(~p+~)~ 
For products between orbitals on the same center, the 
internuclear distance R is zero and the summations 
~i are only dependent on the magnitude of S. 

By tabulating ~ as a function of [S[, the scattering 
by the one-center orbital products can be evaluated 
for each reflection in a relatively short time with ex- 
pressions similar to (5). Evaluation of the scattering 
of the two-center orbital products is more complex 
because the sums are not only functions of [SI, but 
contain the dot products S .  R which cannot be 
factored out. The summations therefore, have to be 
evaluated in every cycle of the least-squares refinement, 
for each reflection and each two-center product in 
each of the bonds. 

To avoid the time-consuming direct evaluation, we 
use a two-dimensional polynomial approximation, in 
which the sums ~t are expresssed as polynomials of 
sin 0/2 and the cosine of ~, the angle between S and R. 

Every summation ~ can be written as 

~ t =  ~ f(c~,cq,~,~q, lSl,IRI) cos (g~qlSl IRI cos ~,) 
P,q 

+ i ~. f'(cp,cq,~,C~q, ISI, IRI) sin (g~qlSI IRI cos ~u) 
pq 

(9) 
in which f a n d  f '  indicate functions defined by expres- 
sions like (6) and (7). Since the real and imaginary part 
are respectively symmetric and anti-symmetric with 
respect to ~ = 0  °, the polynomial contains even and 
odd powers of cos ~ for the real and imaginary parts 
respectively: 

~ t  = (Aoi  -Jr" A21 c o s  2 ~b¢ -~- A41 c o s  4 ~b ¢ ~t_ A61 c o s  6 ~ / 2  I_ . . . ) 

+ i(A u cos ~v + A3~ cos 3 ~v + Ast cos 5 ~v + A7i 
xcos 7 ~ ' + . . . ) .  (10) 

A~i(sin O/2)=Cno + Cl~l(sin 0 / 2 ) + . . .  Clt6(sin 0 / 2 )  6 

+ . . .  (11) 

Thus, the coefficients C~i~ can be obtained from a 
two-dimensional (in ~v and [S]) least-squares fit to the 
numerical results of (6) and (7) and analogous ex- 
pressions. The evaluation of the Fourier transform 
of the orbital products in the structure factor least- 
squares program from the Cj~k is relatively fast. 

A satisfactory accuracy is obtained with the inclu- 
sion of four terms in both the real and imaginary parts 
of (10) and seven terms in (11). Some figures of merit 
are given in Table 1. The maximum deviation between 
the direct and the polynomial evaluation in any of the 
sums describing the scattering in a C-O bond of 
1.22 A length is 0.002 electrons, which is an order of 
magnitude smaller than the standard deviations of the 
population parameters obtained in the application of 
the expressions. 

Table 1. 'Goodness of polynomial fit' to bond scattering 
factors 

R =  ~ ( f d i r e c t - f p o l y  no m i a l )  ~" 

Yf~irect 
C=O bond, length = 1.22 A 

Imaginary 
~ Real part part 
i= 1 0.007 0.01 

2 0-005 0.01 
3 0-006 0.07 
4 0.005 0.001 
5 0.005 0.008 
6 0.004 0.008 
7 0.003 0.003 
8 0.004 0-02 
9 0.004 0.005 

10 0.004 0-007 
Maximum deviation: 0.002 electrons 

]" faireet and fpolynomm are the scattering factors obtained 
with expressions like (5) and with (10), (11). 

Since the bond scattering factors are to be employed 
only after a conventional refinement procedure has 
been completed, the bond-lengths are practically fixed 
and the coefficient Cjik have only to be evaluated once 
for each bond in a molecule. 

For each bond 56 values of C~k are tabulated for 
each of the ten summations ~ ,  a total of 560 entries for 
each type of bond in the crystal. Scattering is then 
evaluated with (5) and similar expressions. 

The savings in computer time are considerable. In 
a typical test-case, a saving of a factor 5 in computing 
time was achieved with a five-term Gaussian expansion. 
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The generalized structure factor 

For a crystal structure with j atoms, each with k 
orbital products, and s asymmetric units per unit cell, 
the contribution of the atoms to the structure factor is" 

Fnxt(atoms)= ~ ~ ~ aj~esT~s exp ( iS .  rjs) (12) 
] s k 

in which aje are the one-center population coefficients, 
J)~s the corresponding scattering factors; Tjs are the 
temperature factors and the vectors rjs define the 
atomic positions. 

Similarly for m bonds, each described by l orbital 
products, between atoms j and i the contribution is 

Fhkz(bonds)= ~ ~ ~, bju gj, ts Tjis exp ( iS .  rj,s) 
m s 1 

(13) 

in which bj~t are the two-center population coefficients, 
gj~zs are the corresponding scattering factors; Tj~s are 
the bond temperature factors and the vector rl~s defines 
the midpoint of the bond between atoms j and i. 

If 

and 

gnl,=g{,, " " -t- lgjils 
and 
Fhk t = Fhkt(atoms ) + Fhkl(bonds) = Ahk l + iBht, t 

we have, assuming that Tys and Tyis are real (see Daw- 
son (1967a) for the limitations of this assumption): 

Ahkt= ~, ~, ~, alk Tls[f/k s c o s  ( S .  r , , ) - - f j ~ ,  
j s k 

x sin (S .  r,s)] + ~ Z ~ bnl Tn,[g,',, cos (S .  rm) 
m s l 

-g13t, sin (S .  rn,)] 

" # t 

) s k 

xsin ( S .  r , , ) l+ ~ ~ ~ b,,, Tn,[g,5,, cos (S .  rj,,) 
m s l 

+g~,l~ sin (S .  rm) ] . (14) 

The expressions for the derivatives required in the 
least-squares refinement can be easily derived from (14) 
when it is kept in mind that rm= (rjs+ r~)/2 and that 
the bond temperature factor T m may be a function of 
Tj~ and Tts (see below). 

Basis functions 

The selection of the type of orbital is of considerable 
importance. Clearly, the electron density parameters 
will be a function of the basis set. Apart from con- 

siderations of comparing the experimental parameters 
with theoretical results, the main criterion is whether 

the summation ~ ~ Puv~ou~ov can, with properly adjusted 
/g v 

Puv's, adequately represent the molecular electron 
density. 

Since conventional X-ray form factors are based on 
Hartree-Fock isolated-atom densities (with the notable 
exception of hydrogen), the use of a Hartree-Fock 
basis set is a logical starting point. 

But, it is well known that exponents of Slater-type 
atomic orbitals ~o=Nce -~r which lead to the lowest 
molecular energy differ significantly from the isolated- 
atom values (Ransil, 1960; Hehre, Stewart & Pople, 
1969). In the exponent optimization by Hehre, Stewart 
& Pople (1969) (HSP) the ls orbitals of the non-hydro- 
gen atoms are taken according to Clementi & Raimon- 
di (1963) for isolated atoms, while the hydrogen ls and 
the first row atom 2s orbital exponents are varied to 
give a minimum energy for each of a number of small, 
neutral, molecules. 

Average values of the results are tabulated by Hehre, 
Stewart & Pople (1969) as 'standard molecular orbital 
exponents' which will be referred to here as the HSP 
set. 

In comparison with the Slater values the HSP ex- 
ponents are considerably larger for the carbon 2s and 
somewhat smaller for oxygen 2s orbital (Table 2). As 
described in a following article (Coppens, Pautler & 
Griffin, 1971) such a difference significantly affects the 
net atomic charges obtained from the diffraction data. 

Table 2. Standard molecular orbitals exponents ac- 
cording to Hehre, Stewart & Pople (HSP) (1970) and 

Slater atomic values for H, C, N, 0 

HSP Slater 
ls 2s, 2p ls 2s, 2p 

H 1.24 --  1.20* --  
C 5.67 1.72 5.70 1-625 
N 6.67 1.95 6.70 1.95 
O 7.66 2-25 7.70 2.275 

* The standard exponent is 1.00, but differs too much from 
the molecular value to be of practical use when dealing with 
molecules. 

Correlation between parameters 

The population parameters Puv may correlate strongly 
with the conventional least-squares parameters. As the 
anisotropic thermal parameters represent a smearing 
function multiplying the molecule-at-rest density, ac- 
cumulation of electron density in bonds or in lone-pair 
regions can be simulated by an apparent increase in 
the thermal parameters (Coppens, 1968). 

In the present study this correlation problem is cir- 
cumvented by use of neutron diffraction values for 
thermal and position parameters. 
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The remaining variables are the scale factor and the U 
electron population parameters, the latter constrained 
by the requirement that the total number of  electrons "~ 
remain constant in the refinement (see Hamilton (1963) :~ 
for the expression used to achieve this constraint). Two 
types of  population parameters P ~  cart be distin- o 
guished: 

(a) the parameters multiplying products ~0~40~ of 
orbitals centered on the same atom. These one-center "6 
population parameters occupy blocks centered on the g 
diagonal of the first-order density matrix (Fig. 1). 
Since the basis set contains four valence orbitals for 
all non-hydrogen atoms (2s, px, pv, pz) the dimensions 
of the block are 4 x 4 (the ls 2 population of  the first- ~' 
row atoms is kept frozen at the full shell values, i.e. 
P~s2 = 2). -~ 

It is interesting to note that some of the products are ~ 
between mutually orthogonal orbitals. In other words, ~ 
the number of  electrons represented by such a term ~ 
integrates to zero according to expression (3). Its con- "~ o 
tribution to the charge density consists of  a shift of  ,~ 
electrons. For example, the product ~0s~0~ has the same ~ -~ ~, 
sign as y, and a positive coefficient P has the effect of ~ > ~ 
shifting density from negative to positive y values. ~ "~ 

(b) the coefficients of products between orbitals "~ ° '~  
centered on different atoms. They again correspond to '~ ~= ~o 
4 x 4 blocks of the density matrix, but these blocks ~ ~ 
are not centered on the diagonal (Fig. 1). ~ -~ 

Because ~ou and ~0~ commute in the orbital product ~ ~ 2 
~Ou~O~, the first-order density matrix is a symmetric ~" t~ . 

matrix i.e. Pu~ = P~u and expression (2) can be rewritten ~, 
as ~ ~ 

t 

/.t v>/.t "~ ~ "" 

where ~ ~ o 
Pu~=2Puv for l t #v .  .~ =~ 

o~ We shall use Pu~ as defined by (15) and omit the ~ ,~ 
dash from the symbol. It follows from (15) that each ~ o 
atom is described by ten independent coefficients. ~ "= b0 

For the two-center product on atoms A a~d B, ~ ~= 
(pu(A) ~o~(B) is generally not equivalent to ~0,(A) q~u(B), x~ .~. 
The one exception to this rule is discussed in the fol- ~ 
lowing argument. 

The orbital product between a p-orbital on atom A o~ 
with its axis parallel to ~i~ and an orbital p~ on atom B .~ 
with its axis parallel to ~i~ is according to (1): o 

II 

~0~a~0j~=(rA . ii~) ( r~ .  ~i~) ~ c~,a~ ~4 exp ( -a~ , ra  z) 
P 

× ~ ¢,~g~" exp (--~,r])=(~A. ~,) (r,. ~) 
q 

X ~ ~_~ CpCqO~ 5/4 ~5/4  e x p  - - ( % d + % r ] )  (16) 
P q 

in which the maximum values o fp  and q are each equal 
to the number of  terms in the Gaussian expansion and 
RA and Re correspond to the distance from nucleus A 
and nucleus B respectively. 

Suppose the y axis is parallel to the bond AB; then 

° ~  
,,< 

t ' q  

0 

6 6 6 6 6 6 6 6 6 6 6 6 6 6 ~  
I I  I I I I I  I I  

•6666666666o66• 
I I  I I I 1 1  I I  

~ 6 6 6 6 6 6 6 6 6 6 6 6 ~  
I I  I I  I I I  

~ 6 6 6 6 6 6 6 6 6 6 6 ~  
I I  I 1 I I 

~66666666o6~  
I I  I I 1 1  

~666666666~  
I I  I I I 1  

~ 6 6 6 6 6 6 ~ 6 ~  
I I I  I I  

~ 6 6 6 6 6 6 6 &  
I I  I 1 

I 1  I I I  

1 I 

I I  I 

~666& 
I I  

I I  
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ezB=(rA. (rB. Z Z c, c, 
p q 

xexp-(%rJ+c~qr~) (17) 
and 

~0~a ~0xB=(rA. 5z) (rB. ~)  ~ ~ cv cq 
p q 

x exp - (%rJ+ c~ar~) (18) 

since the x and z directions are perpendicular to the 
bond ( rA .  6 z ) =  ( rB .  6z) and ( rB .  5 x ) =  ( rA.  ~x). Thus ,  
the two expressions (17) and (18) are equivalent and 
represent an identical distribution of electrons in 
space. Though it may be possible to calculate the two 
corresponding population coefficients, only their sum 
can be obtained experimentally by analysis of X-ray 
scattering. 

It follows that the number of parameters to be 
determined for each bond is fifteen (four in a bond 
involving a hydrogen atom). 

The equivalence of (17) and 08)  is most easily 
exploited by selection of bond-localized coordinate 
systems with one axis parallel to the bond described. 
The reference axis for the one-center products, on the 
other hand, can be selected the same for all atoms. 
If desired, the two sets can be transformed to a single 
reference system by means of similarity transformations 
of the type: 

(Pav).¢w- ABut(A-l) (19) 

in which A is the transformation matrix to a molecular 
coordinate system, defined by ~0n¢ w = Ag. 

Thus, the number of population parameters in the 
all-valence electron model is ten for each atom and 
fifteen for each bond. This number is further reduced 
when atoms or bonds lie on special positions, or when 
the electron density is constrained to obey molecular, 
but non-crystallographic, symmetry. Such symmetry 
restrictions will be discussed in the next section. 

The first refinements with the one-center model on 
c~-oxalic acid dihydrate, indicated a large correlation 
between the coefficients of 2s2s and pxpx, pypy and 
pzpz. The sum of the last three-distributions is spherical- 
ly symmetric like the 2s 2 density, but the latter has a 

radial node unlike the spherical sums of thep 2 products. 
However, as was first pointed out by Stewart (1969), 
the thermal averaging of the densities in the crystal 
makes the 2s 2 virtually indistinguishable from the sum 
of the p2 products, as far as X-ray scattering is con- 
cerned. 

One may therefore, fix the 2s 2 population at some 
reasonable value and provide a full description of the 
atomic asphericity by refining on the remaining nine 
one-center parameters. With this restriction, no cor- 
relation coefficients larger than 0.5 between one- 
center parameters were encountered. 

It can be shown that this procedure is equivalent to 
refinement on the occupancy of a spherical component 
of the atomic density, modified by terms describing 
excess density in variable directions. 

In order to assess the magnitude of correlation 
between two-center parameters a model calculation 
was performed on a C-O molecule with bond length 
1.293 A, lying along the y axis in a primitive unit cell, 
and having an isotropic temperature parameter B-- 
1.0 A 2. 

All one-center populations were set to zero and a set 
of structure factors was calculated with Hartree-Fock 
orbitals and unit occupancy of each of the two-center 
terms only. Reflections were limited to (sin 0/2)max= 
0"5.3,-1, because two-center scattering factors are small 
beyond this limit. 

The correlation coefficients obtained in a single 
cycle of the linear least-squares refinement are given 
in Table 3. Because the least-squares is linear in the 
population coefficients, the correlation parameters are 
independent of the starting values for the parameters. 
But, as they are calculated from the inverse least-squares 
matrix, they are dependent on the number and the se- 
lection of parameters. In other words, a correlation 
coefficient rij between parameters i and j does not de- 
pend solely on parameters i and j. 

The coefficients in Table 3 are therefore only to be 
taken as indications; but the general trends observable 
have been corroborated by later studies with experi- 
mental data. 

In Table 3 the very large correlations with absolute 
value > 0.9 have been underlined. Typically, correlation 

Table 4. Symmetry restrictions on Pay 

- indicates element must be zero. The main symmetry element is taken to be parallel to the z axis. This symbol n represents an 
integer >_ 3. 

Cs ( =  in) C~ C2 C21~ C2v D2,  D2h 

Itv 
ss  + + + + + + 
s p x  + . . . . .  
s p y  + . . . . .  
s p z  - - + - + - 
p x p x  + + + + + + 

PYPY + + + + + + 
p z p z  + + + + + + 
p x p y  + + + + --  - 
p x p z  --  + . . . .  
p y p z  --  + . . . .  

Cnv D n , D n h , D n a , S 4  Ta, On 

+ + + 

21-  ~ 

x x  = y y  x x  = y y  x x  = y y  = z z  

+ + 
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is large between terms such as 2s2s, pu2s, 2spu, PuPu all 
of which represent components of the electron density 
cylindrically symmetric with respect to the bond. This 
redundance in the description of the or-bond can be 
reduced by eliminating one or more of the components. 
A cboice consistent with the treatment of the one- 
center terms is the elimination of the 2s2s population 
coefficient. 

It is worth noting that rather large correlations with 
0.9 > rij > 0.8 also occur between some of the a terms 
and the re-terms, such as pus and pzpz, and between 
some of the 'mixed' terms, such as spz and pupz. 

In the actual refinement of cyanuric acid incorpora- 
ting both one-center and two-center terms some of the 
largest correlations occurred between one-center and 
two-center terms. Such correlations can be reduced by 
applying symmetry restrictions to the individual bonds 
(see below). These restrictions lead to a drastic re- 
duction in the number of parameters at the expense 
of a very small increase in R value. Experimental cor- 
relation coefficients obtained with various models will 
be discussed in detail in later articles. 

Symmetry restrictions 

(a) One-center products 
Restrictions on the values of the one-center param- 

eters occur when atoms occupy special positions. In 
addition, it may be desirable to constrain the electron 
density to conform to non-crystallographic molecular 
symmetry, such as the mirror plane through all the 
atoms of an aromatic molecule. 

The conditions arising from these situations can be 
best derived using the concepts of group theory. For 
the coefficient of an orbital product to be different 
from zero, it has to belong to the totally symmetric 
(A1) representation of the point group describing the 
site symmetry. Since pz, Pu and pz transform like x, y 
and z while s is fully symmetric; the orbital products 
sp~ and pip~ transform as i a n d / j  respectively. 

The transformation properties of these products are 
given in point-group character tables (see for example, 
Cotton, 1963). For example, for an atom lying on a 
mirror plane perpendicular to z, the site symmetry is 
Cs or m and we find that xx, yy, zz and xy belong to 
the fully symmetric representation A1, while xz and yz 
are antisymmetric with respect to the mirror plane. It 
follows that the population parameters P(pxpz) and 
P(PuP,) are zero. 

For point groups with degenerate representations, 
two of the population coefficients may be related. For 
example, in point group C3v, x x + y y  and zz belong 
to the fully symmetric representation A l, implying that 
P(pzpx)=P(pupu), while P(pzpz) is the only other 
population parameter which can be different from zero. 
Similarly, for an atom on a tetrahedral site P(pxpx)= 
P(PuPu) = P(pzpz); all other P ' s  being zero. 

This implies that the model discussed here cannot 
describe antisymmetric features for sites of high sym- 

metry when only one-center terms are included. In 
this respect, it differs fundamentally from the descrip- 
tion of the electron density in diamond, given by Daw- 
son (1967b), in terms of one-center Kubic Harmonics; 
or from a related formalism proposed by Kurki- 
Suonio (1968). 

The last two models can be expected to be more 
suitable for crystals composed of monatomic ions or 
single atoms, while the valence-orbital model is more 
appropriate for molecular crystals. It is the introduction 
of two-center terms which gives the latter model the 
required flexibility. A summary of the symmetry re- 
strictions is given in Table 4. 

(b) Two-center products 
We distinguish two cases: 
Case 1. A rotation axis parallel to bond AB, or a mir- 

ror plane parallel to the bond, lead to restrictions identi- 
cal to those derived for the one-center terms and sum- 
marized in Table 3. For example, if the bond axis is 
parallel to z and a twofold axis coincides with the bond, 
the populations of products spx, spu, pxpz and Pupz 
must be zero. 

These restrictions apply equally to s(A)pl(B), pi(A) 
s(B) and p~(A)pj(B) ( i , j=x,y ,z) .  Such a situation 
occurs in cyanuric acid in which a C--O and an N - H  
bond lie along the crystallographic twofold axis. 
(Verschoor & Keulen, 1971). 

Case 2. A twofold symmetry axis perpendicular to the 
bond, a mirror plane perpendicular to the bond or a 
center of symmetry at the midpoint of the bond are 
symmetry elements which relate the atoms A and B. 
These atoms therefore, must be identical. It follows 
that the populations of q)i(A)q)j(B) and ~o~(A)~o~(B) 
(~0~.j=2s, 2px, 2pu, 2pz) are equal, but all population 
coefficients can differ from zero. 

No symmetry restrictions apply to the 2s(A)2s(B) 
orbital product. 

Different models 

A full description of the electron density with the 
valence-orbital products would include the 'long bonds' 
between atoms which are not bonded in the conven- 
tional sense. However, the number of parameters in 
such a model is prohibitive, while electron density 
difference maps on a variety of molecules have clearly 
shown that the density associated with these 'long 
bonds' is negligible. Moreover, there is little sense in 
trying to allow for intramolecular long bonds, while at 
the same time neglecting intermolecular distances of 
the same length. 

In a more realistic model only short bonds are 
included. Assuming that P2s2s and P2s(A)Zs(B) a r e  kept 
constant, this leads to the following number of param- 
eters: 

nlo=nl. 9 + n i t .  1 +riB. 14+nBH. 4 (20) 

in which nl, nm riB, nBtt are the number of non-hydro- 
gen atoms, the number of hydrogen atoms, the numbers 
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of bonds not involving hydrogen and the number of 
bonds involving hydrogen atoms respectively. A further 
reduction in the number of parameters can be achieved 
by taking into account non-crystallographic symmetry 
of the molecule (though at the expense of a useful check 
on the internal consistency of the results), or by as- 
suming symmetry of the bonds. A reasonable assump- 
tion in an aromatic molecule is that the bonds have 
m m  symmetry, one of the mirror planes coinciding 
with the molecular plane. In a fully saturated com- 
pound or substituent, assumption of cylindrical bond- 
symmetry will lead to a further decrease in the number 
of independent parameters. 

The reduction of complexity is illustrated in Table 5 
for the molecule of p-benzoquinone. 

The problem of correlation between one-center and 
two-center terms is eliminated in the one-center  m o d e l  
in which all two-center terms are neglected. It cannot 
be expected that this model will allow a faithful re- 
presentation of the electron density, especially for a 
site of high symmetry (see above). But it leads to a 
further reduction in the number of parameters and 
gives results which are comparable with theoretical 
calculations with the INDO method (intermediate 
neglect of differential overlap; Pople, Beveridge & 
Dobosh, 1967), in which interactions involving two- 
center densities are similarly neglected. 

Finally, the smallest number of population param- 
eters is required in the recently proposed L-shell 
projection method (Stewart, 1970); in which one oc- 
cupancy factor is applied to the whole spherically- 
averaged valence shell. This useful model can be 
applied with very small modifications of existing least- 
squares programs and leads to net atomic charges in 
good agreement with theoretical calculations (Stewart, 
1970). However, it does not allow for the asymmetric 
features which are evident in many difference maps. 

The selection of model has to depend on the quality 
and completeness of the data set. Application of the 
more sophisticated models to data of mediocre ac- 
curacy should be avoided. 

Treatment of thermal motion 

It remains to consider the treatment of molecular 
vibrations and librations. Thermal motion is strongly 

correlated with details in the atomic charge distribu- 
tion; and it has been shown through comparison of 
X-ray and neutron diffraction results that the use of 
spherical form factors in X-ray crystallography leads 
to systematic errors in the temperature parameters. 
Conversely, simultaneous refinement of population 
and temperature parameters will lead to large cor- 
relations, as confirmed by computations on oxalic acid 
(Coppens, unpublished). 

Thermal parameters, which are completely or to a 
considerable extent unaffected by bonding, can be 
obtained by neutron diffraction or from the refinement 
of high-order X-ray data. The neutron diffraction 
technique is preferable if systematic errors which may 
arise from differences in sample quality and thermal 
diffuse scattering can be eliminated or assessed. The 
disadvantage of the use of high-order X-ray data is 
that asphericities expressed by the one-center popula- 
tion terms do persist to large values of sin 0/2 (Coppens, 
1969). High order X-ray thermal parameters are there- 
fore not entirely free of bonding effects. 

Thermal parameters less susceptible to bonding ef- 
fects can be obtained by a rigid-body motion refine- 
ment. It is important to realize that such a treatment 
neglects the effect of internal modes; a more serious 
drawback the lower the temperature of data collection 
(Coppens & Vos, 1971). 

Perhaps the most promising approach is the mecha- 
nistic treatment of thermal motion followed by Maslen 
(1970), in which temperature factors are derived for 
each of the molecular modes, rather than for individual 
atoms. 

Even if the atomic motions have been determined 
independently, the choice of the bond temperature 
factors Tjis in (13) is not obvious. In principle, the 
electron density distribution is to be convoluted with 
the thermal motion at each point in the molecule: 

f ( S ) =  l Q(r) exp {iS. r} P(r) dz (21) 

in which P(r) is the thermal smearing function at point 
(r). Such a convolution can only be performed if the 
nature of the molecular modes is known. 

In the absence of such information, one may assign 
to the two-center densities the thermal motion of the 
midpoin t  of the bond in which the density is centered, 

Table 5. Benzoqu inone  

Number of parameters for various models 
1. All terms excluding long bonds 
2. As 1, assuming mirror plane through all atoms 
3. As 2, also assuming mm symmetry of bonds 
4. mmm symmetry 
4. One-center model 
5. As 4, assuming mirror plane through all atoms 
6. mmm symmetry 
7. L-shell projection (Stewart, 1970) 

One-center Two-center Total 
76 128 204 
52 84 136 
52 48 100 
15 22 37 
76 - -  76 
52 - -  52 
15 --  15 
12 - -  12 
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and assume this motion to be equal to the average 
mean-square displacement of the adjacent atoms A 
and B. This leads to Tjis=(Tj.s+ Tis)/2 and implies 
that no phase relationship exists between the displace- 
ments of atoms A and B. As the thermal motion is 
generally an average over many external and internal 
modes, this assumption is not unreasonable. 

The assignment of the single parameter T~'is to the 
whole overlap density implies that the thermal motion 
varies little in the region of the bond, i.e. that Tjs ~ Tis. 
A better approximation to (21) is to be used if this con- 
dition is not fulfilled. 

Conclusion 

We have outlined formalisms and practical considera- 
tions pertinent to the population refinement of X-ray 
diffraction data. This refinement can produce detailed 
information on the molecular charge-distribution. But, 
because large correlations exist between its elements, 
the first-order density matrix cannot be fully deter- 
mined experimentally, even when 'long bonds' are 
neglected. The treatment of thermal motion is approx- 
imate, and further studies on the effect of thermal 
averaging are desirable. 
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Structure Factor Amplitudes from Thermal Diffuse Scattering Measurements 
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A method is proposed, for certain single crystals, of estimating the structure factor amplitudes cor- 
responding to Bragg reflexions with strong to medium integrated intensities from measurements of 
the thermal diffuse X-ray scattering in regions of reciprocal space close to the appropriate lattice points. 
The values obtained conventionally from integrated Bragg intensities are often subject to considerable 
error due to extinction effects. The thermal diffuse scattering, being incoherently scattered and of a 
relatively weak intensity, would appear to be less likely to be affected by primary and secondary ex- 
tinction. The structure factor amplitudes (or correction factors for those found from Bragg measure- 
ments) are obtained from the observed scattering data by a least-squares refinement method. Procedures 
are suggested for use where measurements are made on (i) a relative scale, (ii) an absolute scale, with 
respect to the direct beam intensity. The method is illustrated by application to some single-crystal data. 

Introduction 

In recent years, considerable progress has been achieved 
in providing estimates of extinction effects in the deter- 

ruination of structure factor amplitudes from integrated 
Bragg intensities, by both experimental (Chandra- 
sekhar, Ramaseshan & Singh, 1969) and theoretical 
(Zachariasen, 1967, 1968a, b, c,d, 1969; Coppens & 


